Centrality Measures Based on Matrix Functions
نویسندگان
چکیده
منابع مشابه
A matrix analysis of different centrality measures
Node centrality measures including degree, eigenvector, Katz and subgraph centralities are analyzed for both undirected and directed networks. We show how parameter-dependent measures, such as Katz and subgraph centrality, can be “tuned” to interpolate between degree and eigenvector centrality, which appear as limiting cases of the other measures. We interpret our finding in terms of the local ...
متن کاملA Matrix Analysis of Functional Centrality Measures
We consider a broad class of walk-based, parameterized node centrality measures for network analysis. These measures are expressed in terms of functions of the adjacency matrix and generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be “tuned” to interpolate between degree and eigenvector centrality, which appear as limiting c...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Centrality Measures Based on Current Flow
We consider variations of two well-known centrality measures, betweenness and closeness, with a different model of information spread. Rather than along shortest paths only, it is assumed that information spreads efficiently like an electrical current. We prove that the current-flow variant of closeness centrality is identical with another known measure, information centrality, and give improve...
متن کاملEigenvector-Based Centrality Measures for Temporal Networks
Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a princi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Discrete Mathematics
سال: 2018
ISSN: 2161-7635,2161-7643
DOI: 10.4236/ojdm.2018.84008